Abstract

This chapter talks about the unique solvability of the mean field games (MFGs) system with common noise. In terms of a game with a finite number of players, the common noise describes some noise that affects all the players in the same way, so that the dynamics of one given particle reads a certain master equation. It explains the use of the standard convention from the theory of stochastic processes that consists in indicating the time parameter as an index in random functions. Using a continuation like argument instead of the classical strategy based on the Schauder fixed-point theorem, this chapter investigates the existence and uniqueness of a solution. It discusses the effect of the common noise in randomizing the MFG equilibria so that it becomes a random flow of measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.