Abstract

AbstractMedial axis (MA) is a classical shape descriptor in graphics and vision. The practical utility of MA, however, is hampered by its sensitivity to boundary noise. To prune unwanted branches from MA, many definitions of significance measures over MA have been proposed. However, pruning MA using these measures often comes at the cost of shrinking desirable MA branches and losing shape features at fine scales. We propose a novel significance measure that addresses these shortcomings. Our measure is derived from a variational pruning process, where the goal is to find a connected subset of MA that includes as many points that are as parallel to the shape boundary as possible. We formulate our measure both in the continuous and discrete settings, and present an efficient algorithm on a discrete MA. We demonstrate on many examples that our measure is not only resistant to boundary noise but also excels over existing measures in preventing MA shrinking and recovering features across scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.