Abstract
Discrete and multinomial analogs are defined for classical (continuous) invariant nonparametric problems of estimating the sample cumulative distribution function (sample c.d.f.) and the sample median. Admissibility of classical estimators and their analogs is investigated. In discrete (including multinomial) settings the sample c.d.f. is shown to be an admissible estimator of the population c.d.f. under the invariant weighted Cramer-von Mises loss function $L_1(F, \hat{F}) = \int \big\lbrack (F(t) - \hat{F}(t))^2/(F(t)(1 - F(t))) \big\rbrack dF(t).$ Ordinary Cramer-von Mises loss--$L_2(F, \hat{F}) = \int \lbrack (F(t) - \hat{F}(t))^2 \rbrack dF(t)$--is also studied. Admissibility of the best invariant estimator is investigated. (It is well known in the classical problem that the sample c.d.f. is not the best invariant estimator, and hence is not admissible.) In most discrete settings this estimator must be modified in an obvious fashion to take into account the end points of the known domain of definition for the sample c.d.f. When this is done the resulting estimator is shown to be admissible in some of the discrete settings. However, in the classical continuous setting and in other discrete settings, the best invariant estimator, or its modification, is shown to be inadmissible. Kolmogorov-Smirnov loss for estimating the population c.d.f. is also investigated, but definitive admissibility results are obtained only for discrete problems with sample size 1. In discrete settings the sample median is an admissible estimator of the population median under invariant loss. In the continuous setting this is not true for even sample sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.