Abstract
Variational principles for linear coupled dynamic theory of thermoviscoelasticity are constructed using variational theory of potential operators. The functional derived herein gives, when varied, all the governing equations, including the boundary and initial conditions, as the Euler equations. The procedure shown herein does not require, in contrast to Gurtin's method, the transformation of field equations into an equivalent set of integro-differential equations, and includes the initial conditions of the problem explicitly. Gurtin's variational principle for dynamic theory of thermoviscoelasticity is also derived and compared with the present one. Variational principles for elastodynamics, visco-elasticity, etc. are derived as special cases of the variational principle derived herein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.