Abstract

In the mechanics of inviscid conservative fluids, it is classical to generate the equations of dynamic by formulating with adequate variables, that the pressure integral calculated in the time-space domain corresponding to the motion of the continuous medium is stationary. The present study extends this principle to the dynamics of large deformations for isentropic motions in thermo-elastic bodies: We use a new way of writing the equations of motion in terms of “potentials” and we substitute the trace of the stress tensor for the pressure term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.