Abstract

This work is related to modeling of metal surface modification process by combined particles beam. On the basis of thermodynamics of irreversible processes, including equations of state in differential form, a nonlinear model is formulated. The model takes into account the interaction of thermal, diffusion and mechanical waves and finiteness of relaxation times of thermal and diffusion processes. For the combined particle flow such model is proposed for the first time. The numerical algorithm is based on implicit difference schemes. The study of the interaction of waves of different nature is carried out on the example of a copper target treated with nickel and gold particles. It is shown that deformations take the maximal value at the left boundary, which is directly related to the presence of impurity concentration gradients. Depending on the pulse duration, the difference between the extrema on the elastic wave becomes less significant. With increasing temperature, obviously, the diffusion process accelerates. The propagation velocities of the interacting waves are different. The character of distributions of concentrations of introduced particles directly depends on the value of parameters proportional to relaxation times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.