Abstract
Ground-state instability to bond alternation in long linear chains is considered from the point of view of valence-bond (VB) theory. This instability is viewed as the consequence of a long-range order (LRO) which is expected if the ground state is reasonably described in terms of the Kekul\'e states (with nearest-neighbor singlet pairing). It is argued that the bond alternation and associated LRO predicted by this simple, VB picture is retained for certain linear Heisenberg models; many-body VB calculations on spin $s=\frac{1}{2}$ and $s=1$ chains are carried out in a test of this argument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.