Abstract

We propose a technique based on the natural gradient method for variational lower bound maximization for a variational Bayesian Kalman filter. The natural gradient approach is applied to the Kullback-Leibler divergence between the parameterized variational distribution and the posterior density of interest. Using a Gaussian assumption for the parametrized variational distribution, we obtain a closed-form iterative procedure for the Kullback-Leibler divergence minimization, producing estimates of the variational hyper-parameters of state estimation and the associated error covariance. Simulation results in both a Doppler radar tracking scenario and a bearing-only tracking scenario are presented, showing that the proposed natural gradient method outperforms existing methods which are based on other linearization techniques in terms of tracking accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.