Abstract

Quantile regression models are remarkable structures for conducting regression analyses when the data are subject to missingness. Missing values occur because of various factors like missing completely at random, missing at random, or missing not at random. All these may result from system malfunction during data collection or human error during data preprocessing. Nevertheless, it is important to deal with missing values before analyzing data since ignoring or omitting missing values may result in biased or misinformed analysis. This paper studies quantile regressions from a Bayesian perspective. By proposing a hierarchical model framework, we develop an alternative approach based on deterministic variational Bayes approximations. Logistic and probit models are adopted to specify propensity scores for missing manifests and covariates, respectively. Bayesian variable selection method is proposed to recognize significant covariates. Several simulation studies and real examples illustrate the advantages of the proposed methodology and offer some possible future research directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.