Abstract
We utilize false theta function results of Nathan Fine to discover four new partition identities involving weights. These relations connect Göllnitz–Gordon type partitions and partitions with distinct odd parts, partitions into distinct parts and ordinary partitions, and partitions with distinct odd parts where the smallest positive integer that is not a part of the partition is odd and ordinary partitions subject to some initial conditions, respectively. Some of our weights involve new partition statistics, one is defined as the number of different odd parts of a partition larger than or equal to a given value and another one is defined as the number of different even parts larger than the first integer that is not a part of the partition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.