Abstract
The reaction between the lixiviant and the minerals in the aquifer of In-situ uranium leaching (ISL) will result mineral dissolution and precipitation. ISL will cause changes in the chemical composition of groundwater and the porosity and permeability of aquifer, as well as groundwater pollution. Previous studies lack three-dimension numerical simulation that includes a variety of minerals and considers changes in porosity and permeability properties simultaneously. To solve these problems, a three-dimensional reactive transport model (RTM) which considered minerals, main water components and changes in porosity and permeability properties in Bayanwula mine has been established. The results revealed that: (1) Uranium elements were mainly distributed inside the mining area and had a weak trend of migration to the outside. The strong acidity liquid is mainly in the mining area, and the acidity liquid dissolved the minerals during migrating to the outside of the mining area. The concentration front of major metal cations such as K+, Na+, Ca2+ and Mg2+ is about 150m away from the boundary. (2) The main dissolved minerals include feldspar, pyrite, calcite, sodium montmorillonite and calcium montmorillonite. Calcite is the most soluble mineral and one of the sources of gypsum precipitation. Other minerals will dissolve significantly after calcite is dissolved. (3) ISL will cause changes in porosity and permeability of the mining area. Mineral dissolution raises porosity and permeability near the injection well. Mineral precipitation reduced porosity and permeability near the pumping well, which can plugging the pore throat and affect recovery efficiency negatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.