Abstract
Frequency spectra of the surface undulations (flickering) of erythrocyte plasma membranes are measured by direct spectral analysis of the intensity fluctuations of the light passing the cells in a phase contrast microscope. Spectra are taken as a function (1) of the temperature (2) of the viscosity and osmolarity of the outer medium (3) of the aging of cells and (4) of pathological transformations. The spectra are approximately superpositions of two Lorentzian lines. At large frequencies, f, the spectra follow f −2. This behaviour can be interpreted in terms of cell thickness fluctuations caused by thermally excited membrane undulations provided the range of wavelengths is small. The undulations are determined by the membrane curvature elasticity while the lateral tension is negligibly small for cells of discoid shape. The technique presented allows accurate measurements of relative curvature (bending) elastic constants. The spectra of freshly drawn cells are remarkably reproducible. Aging of the cells in the medium leads to an increase in the curvature elastic constant. A decrease in osmolarity causes a reduction in the intensity and line width of the spectra and the flickering vanishes if the cell approaches a spherical shape. The effect of temperature between 10 and 40°C is astonishingly small with the exception of a sudden increase in the amplitude with increasing temperature at 35°C. The flicker spectra of a large fraction of the cells from patients suffering from cronical alcoholism exhibit a reduced line width or an increase in the curvature elastic constant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have