Abstract

Inherent variability in the spectral properties of boreal forests complicates the retrieval of canopy properties such as canopy leaf area index from satellite images. Understanding the drivers of this variability could help provide better estimates of desired canopy cover properties. Field plot data from the Finnish National Forest Inventory and Landsat thematic mapper (TM) images were used to investigate the variation in canopy and understory reflectance during stand development in coniferous boreal forests. Spectral data for each plot were obtained from the Landsat pixel within which the plot center coordinates fell. Nonlinear unmixing was used to estimate the bidirectional reflectance factors (BRFs) of the “sunlit understory” and “canopy and shaded ground” components by site fertility and stand development classes. A forest albedo model was used to estimate the contribution of diffuse radiation reflected downwards from the canopy to the sunlit understory component. The sunlit understory BRF in the near-infrared spectral band decreased as the site fertility decreased and the forest matured, whereas the sunlit understory BRFs in the red and shortwave-infrared spectral bands concurrently increased. The BRFs of the canopy and shaded ground component decreased slightly during stand development, mostly in the near-infrared spectral band. Adding the diffuse contribution to the sunlit understory component changed the estimated component BRFs only a little (0.1%–1.7%) compared with those obtained using a linear mixing assumption. This effect was largest in the near-infrared spectral band and smallest in the red spectral band. For Norway spruce plots, the measured and estimated forest variables were well correlated with the BRFs in all of the studied spectral bands, but for the Scots pine plots, the correlations were notably weaker. Results show a greater importance of the fraction of visible sunlit understory on forest reflectance in Scots pine than in Norway spruce forests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.