Abstract
A 4,100‐base pair (bp) region of the chloroplast genome, amplified via the polymerase chain reaction, was obtained from 14 species of the genus Astragalus and mapped with 23 restriction enzymes. The amplified region encompassed the chloroplast genes RNA polymerase Cl (rpoCl; 90.8% of the gene) and RNA polymerase C2 (rpoC2; 32.7% of the gene) including the intron in rpoC1 and the intergenic spacer between the two genes. Approximately 144 sites (615 bp) were identified; 37 restriction site mutations and one 10‐bp length mutation were detected. Estimated interspecific sequence divergence values ranged from 0.00% to 3.92%. Phylogenetic analysis with Wagner and Dollo parsimony both resulted in a single 41‐step tree with a consistency index of 0.951. The relative positions of 115 restriction sites were mapped. The insertion and ten of the restriction site mutations mapped to the intron in rpoC1, 18 site mutations mapped to the rpoC1 exons, three site mutations mapped to rpoC2, three site changes mapped to the intergenic spacer, and four site changes were not mapped. This study demonstrates the utility of restriction site analysis of PCR‐amplified chloroplast DNA to the study of plant phylogenetic relationships and molecular evolution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have