Abstract
Abstract. Compositional variation among 172 boreal forests stands, based upon the understorey terricolous bryophyte and macrolichen vegetation, is compared with that based upon vascular vegetation. Detrended correspondence analysis (DCA) of the two datasets yielded stand ordinations each indicating a single dominant upland‐bottomland gradient. This was most clear among 138 stands in the cryptogam dataset. Canonical correspondence analysis (CCA) of the 138 stand subset yielded a pronounced first axis gradient from dry, nutrient poor pine dominated forest sites to moist, nutrient rich bottomland sites dominated by balsam poplar woodland.Individual species response curves, by the method of log‐linear least squares regression, yielded three different respective patterns among the most abundant tree, understorey vascular and cryptogamic plant species. Whereas curves for the tree species were ‘Gaussian’ in shape and displaced at somewhat regular intervals along the gradient, the abundant understorey vascular plant species curves clustered in the mesic, mixed wood region two thirds of the way along. Curves for the abundant cryptogams were mostly linear in shape and absent from the mixed wood zone, showing concentrations at one end of the gradient or the other.Two interpretations of the understorey pattern are considered. One proposes competitive exclusion of cryptogams from the mesic mixed wood region by the vascular understorey plants. Another proposes that the cryptogams are adapted to the sharply contrasting ecosystems encountered at one end of the gradient or another but that none can effectively cope with the intermediate, mixed wood ecosystems. Evidence from the response curves favours this second interpretation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have