Abstract
Abstract The Atacama Desert is considered one of the driest places on Earth, where the availability of water plays a crucial role in determining the presence of plants. The sparse vegetation is limited to the coastal mountains, where abundant fog provides the main source of water and nutrients for unique Tillandsia landbeckii ecosystems. The apparent retreat of this fog-dependent vegetation over the past decades, however, may relate to changing climatic conditions, in particular increasing aridity. In this study, we used the nitrogen isotopic composition (δ15N) of plant organic matter as a measure of water availability and atmospheric nitrogen input in present and past Tillandsia dune fields. We compiled an extensive data set on δ15N values of living plants and corresponding site factors (latitude, elevation, cloud cover and precipitation) along a coastal transect. We present radiocarbon-based ages of relict T. landbeckii layers preserved in sand dunes that evolved episodically over the past 2500 years. Site-averaged δ15N values range from +2‰ to −16‰, with variations of up to 4‰ observed within one site that can be related to changes in elevation. The spread in δ15N values is surprising and considerably larger than previously reported for T. landbeckii. In contrast, δ15N values of Huidobria fruticosa and Ophryosporus spp. leaves collected mostly below and above the fog zone vary between +4‰ and + 17‰, largely in agreement with global observations from water-limited systems. Comparison with satellite-based meteorological data and modelling results revealed significant correlations between δ15N values of T. landbeckii and total cloud cover (r = −0.90; p
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.