Abstract
Analyses of the variation characteristics for aridity index (AI) can further enhance the understanding of climate change and have effect on hydrology and agriculture. In this paper, based on the data of 283 standard meteorological stations, the temporal-spatial variations and the influences of climate factors on AI were investigated and the relationship between AI and two climate indices (the Arctic Oscillation (AO); El Nino-Southern Oscillation (ENSO)) were also assessed in northern China (NC) during the period from 1961 to 2012. The results revealed that the annual mean AI decreased at the rate of −0.031 per decade in the past 52 years and the trend was statistically significant at the 0.01 level. The Mann-Kendall (M-K) test presented that the percentages of stations with positive trends and negative trends for AI were 10 and 81.9 % (22.6 % statistically significant), respectively. Spatially, in the western part of 100° E, the extremely dry area declined and the climate tended to become wet obviously. In the eastern part of 100° E, dry area moved toward the east and the south, which resulted in the enhancement of semiarid area and the shrinkage of subhumid area. The contributions of sunshine duration and precipitation to the decline of AI are more than those of other meteorological variables in NC. Moreover, the average temperature has risen significantly and AI decreased in NC, which indicated the existence of “paradox.” Relationship between climate indices (AO and ENSO) and AI demonstrated that the influence of ENSO on AI overweight the AO on AI in NC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have