Abstract

PurposeGlobal sensitivity analysis increasingly replaces manual sensitivity analysis in life cycle assessment (LCA). Variance-based global sensitivity analysis identifies influential uncertain model input parameters by estimating so-called Sobol indices that represent each parameter’s contribution to the variance in model output. However, this technique can potentially be unreliable when analyzing non-normal model outputs, and it does not inform analysts about specific values of the model input or output that may be decision-relevant. We demonstrate three emerging methods that build on variance-based global sensitivity analysis and that can provide new insights on uncertainty in typical LCA applications that present non-normal output distributions, trade-offs between environmental impacts, and interactions between model inputs.MethodsTo identify influential model inputs, trade-offs, and decision-relevant interactions, we implement techniques for distribution-based global sensitivity analysis (PAWN technique), spectral clustering, and scenario discovery (patient rule induction method: PRIM). We choose these techniques because they are applicable with generic Monte Carlo sampling and common LCA software. We compare these techniques with variance-based Sobol indices, using a previously published LCA case study of geothermal heating networks. We assess eight environmental impacts under uncertainty for three design alternatives, spanning different geothermal production temperatures and heating network configurations.ResultsIn the application case on geothermal heating networks, PAWN distribution-based sensitivity indices generally identify influential model parameters consistently with Sobol indices. However, some discrepancies highlight the potentially misleading interpretation of Sobol indices on the non-normal distributions obtained in our analysis, where variance may not meaningfully describe uncertainty. Spectral clustering highlights groups of model results that present different trade-offs between environmental impacts. Compared to second-order Sobol interaction indices, PRIM then provides more precise information regarding the combinations of input values associated with these different groups of calculated impacts. PAWN indices, spectral clustering, and PRIM have a computational advantage because they yield stable results at relatively small sample sizes (n = 12,000), unlike Sobol indices (n = 100,000 for second-order indices).ConclusionsWe recommend adding these new techniques to global sensitivity analysis in LCA as they give more precise as well as additional insights on uncertainty regardless of the distribution of the model outputs. PAWN distribution-based global sensitivity analysis provides a computationally efficient assessment of input sensitivities as compared to variance-based global sensitivity analysis. The combination of clustering and scenario discovery enables analysts to precisely identify combinations of input parameters or uncertainties associated with different outcomes of environmental impacts.

Highlights

  • Recent literature on life cycle assessment (LCA) reflects an increasing interest in methods for uncertainty and sensitivity analysis in order to understand how natural variability and epistemic uncertainties affect the environmental impacts of products and processes

  • (S1 = 0.02; PAWN median = 0.29) yields a conditional variance that is larger than unconditional variance within a large portion of its uncertainty range (Online Resource 2, Fig. S9)

  • This study combined methods for distribution-based GSA, spectral clustering, and scenario discovery to demonstrate the insights which can be gained from these methods in a typical LCA application presenting non-normal outputs, trade-offs across multiple impacts, and interactions between inputs

Read more

Summary

Introduction

Recent literature on life cycle assessment (LCA) reflects an increasing interest in methods for uncertainty and sensitivity analysis in order to understand how natural variability and epistemic uncertainties (i.e., incomplete knowledge) affect the environmental impacts of products and processes. The International Journal of Life Cycle Assessment (2021) 26:1008–1026 attributed to parameter, model, and scenario uncertainties (Rosenbaum et al 2018). Scenario uncertainties relate to the use and interpretation of the model, such as the choice of a suitable functional unit or weighting method. Acknowledging these uncertainties is crucial to supporting decision-making: in comparative LCA, two products may yield impacts that are markedly different under nominal assumptions, but statistically indistinguishable after including uncertainties (Finnveden 2000). The ISO 14044 standard on LCA recommends including at least a sensitivity analysis in the evaluation and quality assurance of LCA results and underlines the contribution of methodological choices as well as input data toward uncertainty (International Organization for Standardization 2006)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call