Abstract

Entropy production is the hallmark of nonequilibrium physics, quantifying irreversibility, dissipation, and the efficiency of energy transduction processes. Despite many efforts, its measurement at the nanoscale remains challenging. We introduce a variance sum rule (VSR) for displacement and force variances that permits us to measure the entropy production rate σ in nonequilibrium steady states. We first illustrate it for directly measurable forces, such as an active Brownian particle in an optical trap. We then apply the VSR to flickering experiments in human red blood cells. We find that σ is spatially heterogeneous with a finite correlation length, and its average value agrees with calorimetry measurements. The VSR paves the way to derive σ using force spectroscopy and time-resolved imaging in living and active matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.