Abstract
Gene-environment interactions represent the modification of genetic effects by environmental exposures and are critical for understanding disease and informing personalized medicine. These often induce differential phenotypic variance across genotypes; these variance-quantitative trait loci can be prioritized in a two-stage interaction detection strategy to greatly reduce the computational and statistical burden and enable testing of a broader range of exposures. We perform genome-wide variance-quantitative trait locus analysis for 20 serum cardiometabolic biomarkers by multi-ancestry meta-analysis of 350,016 unrelated participants in the UK Biobank, identifying 182 independent locus-biomarker pairs (p < 4.5×10−9). Most are concentrated in a small subset (4%) of loci with genome-wide significant main effects, and 44% replicate (p < 0.05) in the Women’s Genome Health Study (N = 23,294). Next, we test each locus-biomarker pair for interaction across 2380 exposures, identifying 847 significant interactions (p < 2.4×10−7), of which 132 are independent (p < 0.05) after accounting for correlation between exposures. Specific examples demonstrate interaction of triglyceride-associated variants with distinct body mass- versus body fat-related exposures as well as genotype-specific associations between alcohol consumption and liver stress at the ADH1B gene. Our catalog of variance-quantitative trait loci and gene-environment interactions is publicly available in an online portal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.