Abstract
The residual variance and the proportion of explained variation are important quantities in many statistical models and model fitting procedures. They play an important role in regression diagnostics and model selection procedures, as well as in determining the performance limits in many problems. In this paper we propose new method-of-moments-based estimators for the residual variance, the proportion of explained variation and other related quantities, such as the ℓ2 signal strength. The proposed estimators are consistent and asymptotically normal in high-dimensional linear models with Gaussian predictors and errors, where the number of predictors d is proportional to the number of observations n; in fact, consistency holds even in settings where d/n → ∞. Existing results on residual variance estimation in high-dimensional linear models depend on sparsity in the underlying signal. Our results require no sparsity assumptions and imply that the residual variance and the proportion of explained variation can be consistently estimated even when d>n and the underlying signal itself is nonestimable. Numerical work suggests that some of our distributional assumptions may be relaxed. A real-data analysis involving gene expression data and single nucleotide polymorphism data illustrates the performance of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.