Abstract

This paper is concerned with the error density estimation in high-dimensional sparse linear model, where the number of variables may be larger than the sample size. An improved two-stage refitted cross-validation procedure by random splitting technique is used to obtain the residuals of the model, and then traditional kernel density method is applied to estimate the error density. Under suitable sparse conditions, the large sample properties of the estimator including the consistency and asymptotic normality, as well as the law of the iterated logarithm are obtained. Especially, we gave the relationship between the sparsity and the convergence rate of the kernel density estimator. The simulation results show that our error density estimator has a good performance. A real data example is presented to illustrate our methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.