Abstract

Forward regression is a statistical model selection and estimation procedure which inductively selects covariates that add predictive power into a working statistical regression model. Once a model is selected, unknown regression parameters are estimated by least squares. This paper analyzes forward regression in high-dimensional sparse linear models. Probabilistic bounds for prediction error norm and number of selected covariates are proved. The analysis in this paper gives sharp rates and does not require β-min or irrepresentability conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.