Abstract

An analytical equation is derived using influence function approximation to calculate the variance of the state estimate for traditional robust state estimators such as the Quadratic-Constant, Quadratic-Linear, Square-Root, Schweppe-Huber Generalized-M and Multiple-Segment estimator. The equation gives insights into the precision of the estimation. Using the equation, the variance of a state estimate can be expressed as a function of measurement noise variances enabling the selection of sensors for a specified estimator precision. It can also be used to search for the optimum estimator parameters to give the minimum sum of variances. The well-known Weighted-Least-Squares variance formula is a special case of the equation and simulations on the IEEE 14-bus system are given to show the usefulness of the equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.