Abstract
Accurate and steady wind speed prediction is essential for the efficient management of wind power factories and energy systems. However, it is difficult to obtain satisfactory forecasting performance because of the characteristics of random nonlinear fluctuations inherent in wind speed variation. Considering the drawbacks of statistical models in forecasting nonlinear time series and the problem of artificial intelligence models easily falling into a local optimum, in this study, we successfully integrate the variable weighted combination theory into a new combined forecasting model that simultaneously consists of three disparate hybrid models based on the decomposition technology. Moreover, the extreme learning machine optimized by the multi-objective grasshopper optimization algorithm is adopted to integrate all the forecasting results derived from each hybrid model to further enhance the forecasting accuracy. In this study, we consider a case study that employs several authentic wind speed data aggregates of Shandong wind farms for an evaluation of the forecasting performance of the proposed combined model. The experimental results reveal that this proposed model surpasses the contrasted benchmark models and is satisfactory for intellective grid programs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have