Abstract
Using the relationships among ridge regression, LASSO estimation, and measurement error attenuation as motivation, a new measurement-error-model-based approach to variable selection is developed. After describing the approach in the familiar context of linear regression, we apply it to the problem of variable selection in nonparametric classification, resulting in a new kernel-based classifier with LASSO-like shrinkage and variable-selection properties. Finite-sample performance of the new classification method is studied via simulation and real data examples, and consistency of the method is studied theoretically. Supplementary materials for the article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.