Abstract
Despite growing interest in estimating individualized treatment rules, little attention has been given the binary outcome setting. Estimation is challenging with nonlinear link functions, especially when variable selection is needed. We use a new computational approach to solve a recently proposed doubly robust regularized estimating equation to accomplish this difficult task in a case study of depression treatment. We demonstrate an application of this new approach in combination with a weighted and penalized estimating equation to this challenging binary outcome setting. We demonstrate the double robustness of the method and its effectiveness for variable selection. The work is motivated by and applied to an analysis of treatment for unipolar depression using a population of patients treated at Kaiser Permanente Washington.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.