Abstract
With the development of 3D sensors technology, 3D point cloud is widely used in industrial scenes due to their high accuracy, which promotes the development of point cloud compression technology. Learned point cloud compression has attracted much attention for its excellent rate distortion performance. However, there is a one-to-one correspondence between the model and the compression rate in these methods. To achieve compression at different rates, a large number of models need to be trained, which increases the training time and storage space. To address this problem, a variable rate point cloud compression method is proposed, which enables the adjustment of the compression rate by the hyperparameter in a single model. To address the narrow rate range problem that occurs when the traditional rate distortion loss is jointly optimized for variable rate models, a rate expansion method based on contrastive learning is proposed to expands the bit rate range of the model. To improve the visualization effect of the reconstructed point cloud, a boundary learning method is introduced to improve the classification ability of the boundary points through boundary optimization and enhance the overall model performance. The experimental results show that the proposed method achieves variable rate compression with a large bit rate range while ensuring the model performance. The proposed method outperforms G-PCC, achieving more than 70% BD-Rate against G-PCC, and performs about, as well as the learned methods at high bit rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.