Abstract
3D sensors such as LiDAR, stereo cameras, and radar have been used in many applications, for instance, virtual or augmented reality, real-time immersive communications, and autonomous driving systems. The output of 3D sensors is often represented in the form of point clouds. However, the massive amount of point cloud data generated from 3D sensors poses big challenges in data storage and transmission. Therefore, effective compression schemes are needed for reducing the bandwidth of wireless networks or storage space of 3D point cloud data. Several point cloud compression (PCC) algorithms have been proposed using signal processing or neural network techniques. In this study, we investigate four state-of-the-art PCC methods using two different datasets with various configurations. The objective of this study is to provide a comprehensive understanding of various approaches in PCC. The results of this paper will be helpful in developing an adaptive 3D point cloud stream compression benchmark that is efficient and benefited from different PCC techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.