Abstract
Existing variable order step size numerical techniques for solving a system of higher-order ordinary differential equations (ODEs) requires direct calculating the integration coefficients at each step change. In this study, a variable order step size is presented for direct solving higher-order orbital equations. The proposed algorithm calculates the integration coefficients only once at the beginning and, if necessary, once at the end. The accuracy of the numerical approximation is validated with well-known orbital differential equations. To reduce computational costs, we obtain the relationship for the predictor-corrector algorithm between integration coefficients of various orders. The efficiency of the proposed method is substantiated by the graphical representation of accuracy at the total evaluation steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.