Abstract

A variable optical attenuator with a bending-sensitive fiber (BSF) that can be used in optical networks is developed. The refractive index profile of the BSF is divided into four regions which are inner core, center dip of inner core, outer core and clad. The 3-dimensional finite difference beam propagation method (3D FD-BPM) is utilized to find the characteristics of the BSF, so the mode profile of the BSF and optical power attenuation according to the bending are investigated, and the equivalent model of the BSF is made. By using this equivalent model of the BSF, the BSF is fabricated, and the refractive index profile of the BSF is measured, which is similar to refractive index profile of the proposed BSF. The fabricated variable optical fiber attenuator (VOFA) consists of the BSF in a rectangular rubber ring with a fixed bend radius (BR) in a steady state. The VOFA using the proposed BSF was able to attenuate the optical power by more than about -38 ㏈ at certain wavelengths (1540∼1560 nm) based on adjusting the mechanical pressure applied to the upper surface of the rectangular rubber ring with the bent BSF. In addition, the proposed VOFA produced an insertion loss of 0.68 ㏈, polarization dependent loss (PDL) of about 0.5 ㏈, and return loss of less than -60 ㏈.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.