Abstract

A variable response to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] hormone treatment was observed for osteoblast cell populations isolated from 12- and 17-day-old embryonic chick calvariae. The younger embryonic cell population showed 2- and 5-fold inductions of osteocalcin and osteopontin gene expression, respectively, and a 25% inhibition of collagen gene expression when treated with 1,25-(OH)2D3. In contrast, these same genes all displayed approximately 80% inhibition of their expression when the older embryonic cell populations were treated with hormone. The hormone response was related to the appearance of the vitamin D3 receptor (VDR) and the developmental state of teh two cell populations by assessing the numbers of cells that were immunologically labeled for two osteoblast lineage, stage-specific surface makers (alkaline phosphatase and SB-5, an osteocyte marker) and the VDR. Using the sequence of marker presentation, with VDR appearing first, followed by alkaline phosphatase and then SB-5, models were tested using logistic regression analysis to validate this order of marker presentation and establish that the two embryonic ages of the cell populations represent discrete stages of their lineage. This analysis indicated that 1,25-(OH)2D3 treatment progressed the 12-day-old embryo cell populations along their lineage and that the hormone promoted the appearance of its own receptor (P < 0.001) However, the appearance of the VDR does not appear to be a determinant in the variable responses of the different embryonic aged cell populations to the hormone. These data quantitatively establish the unique nature of osteoblast cell populations within their lineage progression for cells isolated from embryos of different ages, such that cell populations isolated from younger embryos are comprised of primarily presumptive or immature osteoblasts, whereas cells isolated from older embryos are comprised of mature osteoblasts. These data also demonstrate that the genomic effects of 1,25-(OH)2D3 are dependent on the developmental stage of the osteoblast lineage, and the stimulatory actions of the hormone are targeted to immature osteoblasts, whereas the effect of the hormone on mature osteoblasts is inhibitory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.