Abstract
The ability of different goitrogens (anti-thyroid agents) to induce precocious metamorphosis in larval sea lampreys (Petromyzon marinus) was assessed in four separate experiments. Two of these goitrogens (propylthiouracil [PTU] and methimazole [MMI]) are inhibitors of thyroid peroxidase-catalyzed iodination, and three (potassium perchlorate [KClO(4)], potassium thiocyanate [KSCN], and sodium perchlorate [NaClO(4)]) are anionic competitors of iodide uptake. Because, theoretically, all of these goitrogens prevent thyroid hormone (TH) synthesis, we also measured their influence on serum concentrations of thyroxine and triiodothyronine. All goitrogens except PTU significantly lowered serum TH concentrations and induced metamorphosis in some larvae. The incidence of metamorphosis appeared to be correlated with these lowered TH concentrations in that KClO(4), NaClO(4), and MMI treatments resulted in the lowest serum TH concentrations and the highest incidence of metamorphosis in sea lampreys. Moreover, fewer larvae metamorphosed in the KSCN and low-KClO(4) treatment groups and their serum TH concentrations tended to be greater than the values in the aforementioned groups. MMI treatment at the concentrations used (0.087 and 0.87 mM) was toxic to 55% of the exposed sea lampreys within 6 weeks. The potassium ion administered as KCl did not alter serum TH concentrations or induce metamorphosis. On the basis of the results of these experiments, we have made the following conclusions: (i) In general, most goitrogens other than PTU can induce metamorphosis in larval sea lampreys, and this induction is coincident with a decline in serum TH concentrations. (ii) The method by which a goitrogen prevents TH synthesis is not directly relevant to the induction of metamorphosis. (iii) PTU has variable effects on TH synthesis and metamorphosis among lamprey species. (iv) Unlike in protochordates, potassium ions do not induce metamorphosis in sea lampreys and are not a factor in the stimulation of this event.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have