Abstract

Variable bead width in material extrusion-based additive manufacturing (MEAM) is studied to enhance flexibility and capability. Discussion on associated process parameters, including the layer thickness, material flow rate, and travel feed rate is conducted to deduce their potential influence on the bead width of deposited filaments. Then the analytical models are established to analyze their effects on the bead width quantitatively. Based on the theoretical and experimental analyses, the material extrusion flow rate is selected as the input variable to control the bead width during the extrusion and deposition processes. The proposed method is implemented and verified with deposition of a multi-layer but single column thin-walled structure. Based on the implementation of several applications, it is concluded that the bead width could be achieved by adjusting some related process parameters and it can facilitate the extension and application of extrusion-based additive manufacturing technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call