Abstract

AbstractIn laser wire Additive manufacturing (LWAM), the final geometry is produced using layer-by-layer deposition principle of beads. To achieve good geometrical accuracy of the final product, proper implementation of the bead geometry is essential. The process parameters have a direct influence on the bead geometry, thus to the printed part. In this paper, we propose a bead width prediction model to improve deposition accuracy. A regression algorithm is applied to the experimental results to predict the bead width dimension. Bead prediction equation relating the bead width growth for each layer is obtained for a given set of process parameters. The prediction equations show similar evolution trends and confirm the influence of deposition process parameters on the bead width. The proposed method demonstrates a prospective insight on a more proper selection of process or physical parameter intervening in laser wire additive manufacturing process.KeywordsBead widthProcess parameters3D printingRegression problem

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call