Abstract

To improve the efficiency of multi-coil data compression and recover the compressed image reversibly, increasing the possibility of applying the proposed method to medical scenarios. A deep learning algorithm is employed for MR coil compression in the presented work. The approach introduces a variable augmentation network for invertible coil compression (VAN-ICC). This network utilizes the inherent reversibility of normalizing flow-based models. The aim is to enhance the readability of the sentence and clearly convey the key components of the algorithm. By applying the variable augmentation technology to image/k-space variables from multi-coils, VAN-ICC trains the invertible network by finding an invertible and bijective function, which can map the original data to the compressed counterpart and vice versa. Experiments conducted on both fully-sampled and under-sampled data verified the effectiveness and flexibility of VAN-ICC. Quantitative and qualitative comparisons with traditional non-deep learning-based approaches demonstrated that VAN-ICC carries much higher compression effects. The proposed method trains the invertible network by finding an invertible and bijective function, which improves the defects of traditional coil compression method by utilizing inherent reversibility of normalizing flow-based models. In addition, the application of variable augmentation technology ensures the implementation of reversible networks. In short, VAN-ICC offered a competitive advantage over other traditional coil compression algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call