Abstract

Single-particle tracking (SPT) of biomolecules in the plant endoplasmic reticulum has the potential to inform on the formation of protein-protein complexes, metabolons, and the transport of molecules through both the ER membrane and lumen. Plant cells are particularly challenging for observing and tracking single molecules due to their unique structure, size, and considerable autofluorescence. However, by using variable-angle or highly inclined epifluorescence microscopy (VAEM) and transient expression in tobacco, it is possible to observe single-particle dynamics in the ER. Selecting the appropriate fluorophore, and ensuring the correct fluorophore density in the ER, is essential for successful SPT. By using tuneable fluorophores, which can be photoconverted and photoactivated, it is possible to vary the density of visible fluorophores in the ER dynamically. Here we describe methods to prepare plant samples for VAEM and two methods for determining and analyzing single-particle tracks from VAEM time series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.