Abstract
The study aimed to analyze the spatial variability of surface soil moisture at different spatial scales based on field measurements and remote sensing estimates. Multitemporal Envisat satellite Advanced Synthetic Aperture Radar (ASAR) data were used to derive the surface soil moisture utilizing an empirical C‐band retrieval algorithm. Eight wide‐swath (WS) images with a spatial resolution of 150 m acquired between February and October 2008 were used to determine the surface soil moisture contents. The accuracy of the surface soil moisture retrievals was evaluated by comparison with in situ measurements. This comparison yielded a root mean square error of 5% (v/v). Based on our in situ measurements as well as remote sensing results, the relationship of the coefficient of variation of the spatial soil moisture patterns and the mean soil moisture was analyzed at different spatial scales ranging from the catchment scale to the field scale. Our results show that the coefficient of variation decreases at all scales with increasing soil moisture. The gain of this relationship decreases with scale, however, indicating that at a given soil moisture state, the spatial variation at the large scale of whole catchments is larger than at the field scale. Knowledge of the spatial variability of the surface soil moisture is important to better understand energy exchange processes and water fluxes at the land surface as well as their scaling properties.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have