Abstract

We investigated how the rheological characteristics of a flotation slurry change in response to variations in mineral species, slurry concentration, and particle size; slurry pH; and trap and rheological control reagent concentrations using slurries containing galena, sphalerite, quartz, and kaolinite. The results indicate that reducing particle size and increasing slurry concentration leads to varying degrees of increase in apparent viscosity and yield stress. At the same particle size, the slurry exhibits the following order of apparent viscosity and yield stress: kaolinite > galena > sphalerite > quartz. In addition, as the slurry’s apparent viscosity and yield stress increase, the rheology decreases, creating progressively unfavorable conditions for the flotation of lead, zinc, and other target minerals. Furthermore, changes in pH have no significant effect on the slurry’s rheology when the slurry is comprised of vein minerals. Moreover, galena and sphalerite depict particle agglomeration in the slurry. Ultimately, the addition of sodium silicate as a rheological control reagent substantially enhances the slurry’s rheological properties. This results in a system where problematic minerals like kaolinite are more effectively dispersed, thereby promoting efficient lead-zinc mineral flotation. Regarding the flotation of lead sulfide and zinc minerals, the addition of kaolinite raises the apparent viscosity of the mixed slurry, hindering the flotation of the target minerals. Conversely, quartz lowers the apparent viscosity aiding the flotation separation process. Understanding the relationship between flotation conditions and the pulp’s rheological properties can provide valuable guidance for subsequent flotation tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.