Abstract

We present simulations of the tidal disruption of a solar mass star by a $10^6M_{\odot}$ black hole. These, for the first time, cover the full time evolution of the tidal disruption event, starting well before the initial encounter and continuing until more than 90% of the bound material has returned to the vicinity of the hole. Our results are compared to the analytical prediction for the rate at which tidally-stripped gas falls back. We find that, for our chosen parameters, the overall scaling of the fallback rate, $\dot{M}_{\rm{fb}}$, closely follows the canonical $t^{-5/3}$ power-law. However, our simulations also show that the self-gravity of the tidal stream, which dominates the tidal gravity of the hole at large distances, causes some of the debris to recollapse into bound fragments before returning to the hole. This causes $\dot{M}_{\rm{fb}}$ to vary significantly around the $t^{-5/3}$ average. We discuss the implications of our findings in the context of the event Swift J1644+57.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.