Abstract

We study close encounters of a 1 M ⊙ middle-age main-sequence star (modeled using MESA) with massive black holes through hydrodynamic simulations, and explore in particular the dependence of the outcomes on the black hole mass. We consider here black holes in the intermediate-mass range, M BH = 100–104 M ⊙. Possible outcomes vary from a small tidal perturbation for weak encounters all the way to partial or full disruption for stronger encounters. We find that stronger encounters lead to increased mass loss at the first pericenter passage, in many cases ejecting the partially disrupted star on an unbound orbit. For encounters that initially produce a bound system, with only partial stripping of the star, the fraction of mass stripped from the star increases with each subsequent pericenter passage and a stellar remnant of finite mass is ultimately ejected in all cases. The critical penetration depth that separates bound and unbound remnants has a dependence on the black hole mass when M BH ≲ 103 M ⊙. We also find that the number of successive close passages before ejection decreases as we go from the stellar-mass black hole to the intermediate-mass black hole regime. For instance, after an initial encounter right at the classical tidal disruption limit, a 1 M ⊙ star undergoes 16 (5) pericenter passages before ejection from a 10 M ⊙ (100 M ⊙) black hole. Observations of periodic flares from these repeated close passages could in principle indicate signatures of a partial tidal disruption event.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.