Abstract

The overlap region between the eastern fringe of the Asian westerly region and the temperate continental-monsoon climate transition zone is sensitive to climate changes and is characterized by fragile ecosystems. Uncovering the long-term historical climate variability patterns in this region is necessary. A standardized tree-ring width chronology was constructed based on the tree-ring samples collected from four representative tree species in four typical areas in the overlap region, and the 203- to 343-year annual mean minimum temperature series in the overlap region were reconstructed. The reconstructed series overlapped well with extreme climate events and low-temperature periods recorded in historical data. Therefore, the reconstructed model is stable and reliable. As suggested by the reconstructed series, the annual average minimum temperature in the overlap region changes sharply from east to west, and the periodicity change in the overlap region shows a trend of gradually weakening from the east and west ends to the middle. In the nineteenth century, the high-latitude area was in the high-temperature period, and the entire overlap region experienced significant low-temperature periods lasting 20-45years until the 1950s. The western part had an earlier low-temperature period start time, a longer cooling duration, and a slower cooling rate than the central part. The overlap region experienced a significant warming period in approximately the last half-century, with temperatures increasing faster in the western and eastern parts than in the central part. The temperature variability in the overlap region was more intense in the last two centuries, with shorter periodicities and a larger proportion of cold periods. The central and western parts of the Asian westerly region, the mid- to high-latitude regions of the transition zone, and the overlap region experienced significant low-temperature periods or drastic cooling trends (the Little Ice Age) in the first half of the nineteenth century and significant warming trends afterwards due to global warming. The influences of these changes may have been exacerbated by the westerly circulation. The results of this study provide new insights into the use of dendroclimatology to extract temperature series in the Asian westerly region and the transition zone and a reference for research on global climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call