Abstract

This article presents a comprehensive numerical analysis of liquid oxygen (LOX) droplet vaporization in quiescent hydrogen and water environments over a broad range of ambient conditions. The theoretical formulation is based on a complete set of conservation equations of mass, momentum, energy, and species concentrations in a spherically symmetric coordinate. A self-consistent and efficient method for evaluating transport properties and a unified treatment of general fluid thermodynamics are incorporated into an implicit finite-volume numerical scheme. The analysis is further equipped with a water-vapor condensation model for treating the phase change near the droplet surface. The effects of the Dufour and Soret cross-diffusion terms are explored and found to exert negligible influences on the droplet lifetime. Various issues associated with high-pressure droplet vaporization are investigated. In addition, correlations for droplet lifetimes are established for both LOX/hydrogen and LOX/hydrogen/water systems in terms of the initial droplet diameter, reduced critical temperature of oxygen, and thermal conductivities of oxygen and ambient gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call