Abstract
A droplet-in-bubble approach has been incorporated into a previously developed high-pressure droplet vaporization model to study the clustering effects on a liquid oxygen (LOX) droplet evaporating in hydrogen environments under both sub- and supercritical conditions. A broad range of ambient pressures and temperatures are considered. Results indicate that pressure exerts strong influence on droplet vaporization behaviors in a dense cluster environment. Increasing ambient pressure reduces droplet interactions and significantly decreases the droplet vaporization time. The effect of ambient temperature on droplet interactions is found to be very weak. The present study is intended to illuminate the underlying physics of droplet clustering phenomena in combustion devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.