Abstract

Urchin-like Mg-doped ZnO nanowire networks were prepared by MgO-seeded vapor-phase growth of ZnO nanowires, and their potential as gas-sensing materials was investigated. The response (resistance ratio) of the urchin-like Mg-doped ZnO nanowire networks to 5ppm C2H5OH at 350°C was as high as 343, which is significantly higher than that of pure ZnO nanowire networks (7.0). In addition, the Mg-doped ZnO nanowire network sensors showed excellent selectivity to C2H5OH and an unprecedentedly high response (28.8) even to 0.25ppm C2H5OH. The enhancement of the gas response and selectivity to C2H5OH was attributed to Mg-doping-induced decrease of the charge carrier concentration, the change of nanowire thickness/morphology, and the catalytic promotion of the C2H5OH sensing reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.