Abstract
Polyurethane (PU) is the sixth most used plastic in the world. Because many PU derived materials are thermosets and the monomers are valuable, chemical recycling to recover the polyol component is the most viable pathway to utilizing postconsumer PU waste in a closed-loop fashion. Acidolysis is an effective method to recover polyol from PU waste. Previous studies of PU acidolysis rely on the use of dicarboxylic acid (DCA) in high temperature reactions (>200 °C) in the liquid phase and result in unwanted byproducts, high energy consumption, complex separations of excess organic acid, and an overall process that is difficult to scale up. In this work, we demonstrate selective PU acidolysis with DCA vapor to release polyol at temperatures below the melting points of the DCAs (<150 °C). Notably, acidolysis with DCA vapor adheres to the principles of green chemistry and prevents in part esterification of the polyol product, eliminating the need for additional hydrolysis/processing to obtain the desired product. The methodology was successfully applied to a commercial PU foam (PUF) postconsumer waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.