Abstract
AbstractA two‐step synthesis of SiC involving initial exposure of carbon surfaces to Si vapor, followed by Si melt infiltration, is investigated in this article with emphases on the mechanisms, kinetics, and microstructure evolution. Interrupted differential thermal analysis of amorphous C and Si powder mixtures and microstructure characterization are used to generate insight into the stages of the reaction. Exposure to Si vapor yields a SiC layer with nano‐scale porosity driven by the volume change associated with the reaction. This forms a continuous pore network that promotes subsequent melt access to the reaction front with the C. While the pores remain open, the vapor phase reaction proceeds at a nearly constant rate and exhibits a strong temperature sensitivity, the latter due in part to the temperature sensitivity of the Si vapor pressure. The implications for enhancing the reactive melt infiltration process and fabrication of SiC matrices for ceramic composites are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.