Abstract
AbstractBismuth (Bi)‐doped glass fibers are being developed into next‐generation broadband amplifiers and tunable lasers. Yet, the well‐developed Bi‐doped fiber devices only realize silica‐based optical fibers prepared by the modified chemical vapor deposition method, which faces challenges such as low doping concentration, high cost, intricate device structure, and high preparation difficulty. Here, a novel highly Bi‐doped multicomponent phosphate glass was developed. The high ion solubility of this phosphate glass facilitates achieving a Bi doping concentration of 8 mol%. The introduction of aluminum nitride (a new reducing agent) can create a local reducing environment, further increasing the concentration of low‐valence near‐infrared (NIR) active Bi ions. Furthermore, the resulting enhanced highly Bi‐doped multicomponent phosphate glass with efficient 900–1600 nm NIR emission can be drawn into corresponding optical fibers by a rod‐in‐tube method. Broadband NIR amplified spontaneous emission with a 3 dB bandwidth of 275 nm was achieved in this new fiber. As far as we know, this is the first successful preparation of Bi‐doped multicomponent phosphate glass fiber. Our results indicate that this fiber will be a powerful alternative to Bi‐doped silica‐based fibers for the preparation of related Bi‐doped fiber devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.