Abstract
AbstractVapor–liquid phase equilibrium (VLE) plays a crucial role in chemical process design, process equipment control, and experimental process simulation. However, experimental acquisition of VLE data is a challenging and complex task. As an alternative to experimentation, VLE data prediction offers great convenience and utility. In this article, an artificial intelligence network is proposed to predict the temperature and the vapor phase composition of binary mixtures. We constructed a graph neural network (GNN) and designed an uncertainty‐aware learning and inference mechanism (UALF) in the prediction process. The model was tested on both a self‐constructed dataset and a publicly available dataset. The results demonstrate that the proposed method effectively reveals the phase equilibrium properties of the target data. This work presents a novel approach for predicting vapor–liquid phase equilibrium in binary systems and proposes innovative ideas for investigating phase equilibrium mechanisms and principles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.