Abstract
Isobaric (T–x–y) binary vapor–liquid equilibrium (VLE) data were measured and modeled for the n-dodecane + {propan-1-ol, butan-1-ol, or 2-methylpropan-1-ol} systems at 40 kPa. A low pressure dynamic still, capable of measuring systems of high relative volatility, was used for the measurements. The vapor and liquid equilibrium compositions were determined using a gas chromatograph with a thermal conductivity detector. The experimental data were regressed using the combined method (γ–φ approach). The nonrandom two-liquid (NRTL) activity coefficient model was used to describe the liquid phase nonideality, and the vapor phase was assumed to be ideal. The NRTL model parameters were determined using nonlinear least-squares regression. The experimental data were found to be well correlated with the thermodynamic modeling. No azeotropic behavior has been observed. The three investigated systems show a large positive deviation from Raoult’s law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.